• /  39
  • 下載費用: 27.9積分  

廣義逆矩陣和在線性方程組中的應用.doc

'廣義逆矩陣和在線性方程組中的應用.doc'
?畢業論文題 目 廣義逆矩陣及其在線性方程組中的應用 摘 要線性方程組的逆矩陣求解方法只適用于系數矩陣為可逆方陣,但是對于一般線性方程組,其系數矩陣可能不是方陣或是不可逆的方陣,這種利用逆矩陣求解線性方程組的方法將不適用。為解決這種系數矩陣不是可逆矩陣或不是方陣的線性方程組,我們對逆矩陣進行推廣,研究廣義逆矩陣,利用廣義逆矩陣求解線性方程組。廣義逆矩陣在數據分析、多元分析、信號處理、系統理論、現代控制理論、網絡理論等許多領域中有著重要的應用,本文針對廣義逆矩陣的定義、性質、計算及其在線性方程組中的應用進行研究,利用廣義逆矩陣求解線性方程組的通解及極小數解。關鍵詞:廣義逆矩陣;Moore-Penrose 方程;線性方程組;滿秩分解ABSTRACTThe method to solve linear equations using the inverse matrix is only feasible when the coefficient matrix is reversible. But for the general system of linear equations, the coefficient matrix may be a irreversible matrix or a rectangular matrix, in this case, we can not use this method to solve the system of linear equations. In order to find solutions of this system, we promote the inverse matrix to generalized inverse matrix, and than use the generalized inverse matrix to solve the system of linear equations.The generalized inverse matrix is important in many area, such as Data analysis, Multivariate analysis, Signal processing, System theory, Modern control theory, Network theory and so on. This paper studies the definition, properties, calculation of the generalized inverse matrix , and the applications in soluting the system of linear equations. Utilizing the generalized inverse matrix, we study the soluting of the general system of linear equations and the minimum norm solution.Key words: generalized inverse matrix; Moore-Penrose eqations; linear equations; full rank decomposition目 錄摘要 ……………………………………………………………………………… ⅠABSTRACT……………………………………………………………………… Ⅱ第一章 前言 ……………………………………………………………………… 1第二章 廣義逆矩陣 ……………………………………………………………… 2§2.1 廣義逆矩陣的定義 ……………………………………………………… 2§2.2 廣義逆矩陣的性質 ……………………………………………………… 3第三章 廣義逆矩陣的計算……………………………………………………… 12§3.1 一般廣義逆求解………………………………………………………… 12§3.2 Moore-Penrose 廣義逆………………………………………………… 19第四章 廣義逆矩陣在線性方程組中的應用…………………………………… 24§4.1 相容方程組的求解……………………………………………………… 25§4.2 不相容方程組的極值問題解…………………………………………… 28結論……………………………………………………………………………… 33參考文獻………………………………………………………………………… 34致……………………………………………………………………………… 35第一章 前言逆矩陣的概念只對非奇異矩陣才有意義,但在實際問題中,遇到的矩陣不一定是方陣,即使是方陣也不一定非奇異,這就需要將逆矩陣的概念進行推廣。為此,人們提出了下述關于逆矩陣的推廣:(1) 該矩陣對于奇異矩陣甚至長方矩陣都存在;(2) 它具有通常逆矩陣的一些性質;(3) 當矩陣非奇異時,它即為原來的逆矩陣。滿足上面三點的矩陣稱之為廣義逆矩陣。1903年,瑞典數學家弗雷德霍姆開始了對廣義逆矩陣的研究,他討論了關于積分算子的一種廣義逆。1904年,德國數學家希爾伯特在廣義格林函數的討論中,含蓄地提出了微分算子的廣義逆。美國芝加哥的穆爾(Moore)教授在1920年提出了任意矩陣廣義逆的定義,他以抽象的形式發表在美國數學會會刊上。我國數學家曾遠榮和美籍匈牙利數學家·諾伊曼及其弟子默里分別在1933年和1936年對希爾伯特空間中線性算子的廣義逆也作過討論和研究。1951年瑞典人布耶爾哈梅爾重新給出了穆爾(Moore)廣義逆矩陣的定義,并注意到廣義逆矩陣與線性方程組的關系。1955年,英國數學物理學家羅斯(Penrose)以更明確的形式給出了與穆爾(Moore)等價的廣義逆矩陣定義,因此通稱為Moore-Penrose廣義逆矩陣,從此廣義逆矩陣的研究進入了一個新階段?,F如今,Moore-Penrose廣義逆矩陣在數據分析、多元分析、信號處理、系統理論、現代控制理論、網絡理論等許多領域中有著重要的應用,使這一學科得到迅速發展,并成為矩陣論的一個重要分支。第二章 廣義逆矩陣§2.1 廣義逆矩陣的定義一、 Penrose廣義逆矩陣的定義為了推廣逆矩陣的概念,我們引進了廣義逆矩陣的定義,下面給出廣義逆矩陣的Moore-Penrose 定義。定義2.1 設矩陣,若矩陣滿足如下四個Penrose方程 (?。?(ⅱ) (ⅲ) (ⅳ)中的一部分或全部方程,則稱為的一個廣義逆矩陣。若只滿足(?。┦?,則成為的一個-逆,可記為,所有滿足-逆的構成的集合記為。若滿足四個方程中的第個方程,則稱為的一個-逆,記為,所有滿足-逆的構成的集合記為。二、 常見廣義逆定義按照廣義逆定義,分別滿足一個、兩個、三個和四個方。省略部分。膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袈聿蚇蒂膇肈莇螇肅肇葿薀罿肆薂螆裊肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羈膂莈蚅袇膁蒀袀螃膀薂蚃肂腿節衿羈腿莄螞襖羋蕆袇螀芇蕿蝕聿芆艿蒃肅芅蒁螈羈芄薃薁袆芃芃螆螂芃蒞蕿肁節蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈螞螂羂薁袈肀肁芀蟻羆肁莃袆袂肀薅蠆袁節膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羈莀蒈羃膇芆蕆蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃蠆羆艿薃袁節膅薂羄肅蒃薁蚃芀荿薀螆肅芅蕿袈羋膁蚈羀肁蒀蚇蝕襖莆蚇螂肀莂蚆羅袂羋蚅蚄膈膄蚄螇羈蒂蚃衿膆莈螞羈罿芄螁蟻膄膀螁螃羇葿螀裊膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃螞肂莈蒂螄羋芄蒁袆肀膀蒀罿袃薈
關 鍵 詞:
廣義 矩陣 線性 方程組 應用
 天天文庫所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
關于本文
本文標題:廣義逆矩陣和在線性方程組中的應用.doc
鏈接地址: http://www.094347.live/p-55568184.html
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服點擊這里,給天天文庫發消息,QQ:1290478887 - 聯系我們

本站為“文檔C2C交易模式”,即用戶上傳的文檔直接賣給(下載)用戶,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有【成交的100%(原創)】。本站是網絡服務平臺方,若您的權利被侵害,侵權客服QQ:1290478887 歡迎舉報。

[email protected] 2017-2027 http://www.094347.live 網站版權所有

粵ICP備19057495號 

收起
展開
有没有苹果软件赚钱的 吉林11选5开奖时间 上证50指数基金 内蒙古快三购买技巧 上海福彩选四走势图 贵州快3遗漏一定牛 德旺配资 山西11选5任二遗漏 加拿大28游戏规则介绍 十一运夺金直播 宁夏11选五开奖结果查看